Exercise 4

Verify that $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$.
Suggestion: Reduce this inequality to $(|x|-|y|)^{2} \geq 0$.

Solution

Suppose that $z=x+i y$. Then

$$
\begin{aligned}
\sqrt{2} \sqrt{x^{2}+y^{2}} & \stackrel{?}{\geq}|x|+|y| \\
2\left(x^{2}+y^{2}\right) & \stackrel{?}{\geq}(|x|+|y|)^{2} \\
2 x^{2}+2 y^{2} & \stackrel{?}{\geq} x^{2}+2|x||y|+y^{2} \\
x^{2}-2|x||y|+y^{2} & \stackrel{?}{\geq} 0 \\
(|x|-|y|)^{2} & \geq 0 .
\end{aligned}
$$

This inequality is true because a squared quantity is nonnegative, so the inequality in question is verified.

